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Abstract— We present a method for learning Capture Points
for humanoid push recovery. A Capture Point is a point on the
ground to which the biped can step and stop without requiring
another step. Being able to predict the location of such points
is very useful for recovery from significant disturbances, such
as after being pushed. While dynamic models can be used to
compute Capture Points, model assumptions and modeling errors
can lead to stepping in the wrong place, which can result in large
velocity errors after stepping. We present a method for computing
Capture Points by learning offsets to the Capture Points predicted
by the Linear Inverted Pendulum Model, which assumes a point
mass biped with constant Center of Mass height. We validate our
method on a three dimensional humanoid robot simulation with
12 actuated lower body degrees of freedom, distributed mass,
and articulated limbs. Using our learning approach, robustness
to pushes is significantly improved as compared to using the
Linear Inverted Pendulum Model without learning.

I. INTRODUCTION

Appropriate foot placement is critical when attempting to
come to a stop during dynamic three dimensional bipedal
walking. Simple models can be used to determine where to
step in order to stop [9], [26], but the errors resulting from the
assumptions of these models may be significant, especially in
bipeds with a large number of degrees of freedom, distributed
mass, and complex walking control systems. More complex
models can reduce the errors resulting from these assumptions,
but even with accurate models, small errors in modeling
parameters may lead to significant errors in predicting the
desired stepping location.

Humans are very adept at stepping in just the right place
after being pushed in order to regain balance. From simple
observations of toddlers it is clear that this ability improves
with practice and that learning likely plays a large role in a
person’s ability to choose an appropriate place to step. This
ability becomes almost reflexive as can be experienced by the
following simple demonstration:

Stand on one leg and have someone push you in a random
direction. Notice how you step to a spot that allows you to
stand on one leg again. Now, still standing on one leg, have
someone push you again in a random direction, but this time
purposefully step to a spot on the ground that does not allow
for you to regain balance and stop. Notice how natural and
automatic it seems when you step in a good spot but how
difficult and how much conscious effort it takes to step in a
bad spot.

Since humans are so adept at stepping to an appropriate
place to recover from pushes, we argue that humanoid robots
need to become just as adept at this skill in order to operate
in real world environments and perform tasks that humans
perform.

Learning where to step in order to recover from a distur-
bance is a promising approach that does not require sophisti-
cated modeling, accurate physical parameter measurements, or
overly constraining limitations on the walking control system.
In this paper we present a method for learning Capture Points
for humanoid push recovery. Loosely speaking, a Capture
Point is a point on the ground in which a biped can step to
and stop without requiring another step [26], [28]. The locus
of all possible Capture Points is the Capture Region.

The location of the Capture Region depends on a number
of factors, including the state of the robot and the kinematic
reachability of the swing leg. In addition, one can define
Capture Points with certain qualifications or assumptions. In
this paper we assume the robot has an existing control system
which can step to any reasonable desired location on the
ground, and it takes this desired location as an input variable.
Given the robot and control system, we learn the desired
stepping location in order for the robot to stop. This method
should be applicable to any humanoid robot and control system
that has certain characteristics described in the next section.

In this paper we validate our method on a three dimensional
Humanoid robot simulation with 12 actuated lower body
degrees of freedom. Figure 1 shows simulation results before
learning and after learning for a given push. Before learning
the robot fails to recover in a single step, while after learning
it does recover.

II. PROBLEM STATEMENT

We wish to learn Capture Points, points on the ground that
the robot can step to and stop in a single step. These Capture
Points are a function of the robot’s state, the control actions
during the current stance phase, and the control actions during
the next stance phase in which the robot attempts to stop. In
this paper we assume that the robot’s control systems already
exist and that we can modify the module, which we call
the Desired Stepping Location Calculator, that determines the
desired stepping location. We then use learning to improve this



Fig. 1. Simulation results before learning (left) and after learning (right) showing the humanoid robot reacting to a disturbance in a single step. Before
learning the robot fails to recover balance. After learning the robot successfully comes to a stop in one step. The ball shown in the first frame of each
animation applied a push from straight on at 550 Newtons for 0.05 seconds. Images are from left to right, top to bottom and are spaced 0.04 seconds apart.

module, better predicting Capture Points, given the preexisting
control systems.

Before stating the problem, we first define a few terms. Our
goal is for the robot to come to a stop after being pushed. We
define a Stopped State as follows:
• Stopped State: Robot state in which the robot’s Center

of Mass velocity, angular momentum about the Center of
Mass, and Center of Mass linear and rotational accelera-
tions are all less than given thresholds.

Note that the velocity and acceleration thresholds need to be
non-zero for Stopped States to exist for many bipedal models.
For example, for a point-foot point-mass biped, zero Center
of Mass velocity and acceleration cannot be achieved during
single support in the presence of infinitesimal disturbances.
With small but finite thresholds, the robot will be essentially
stopped, such that with a small amount of Center of Pressure
regulation on the foot or a small amount of upper body
motions, the robot could maintain balance without requiring
any additional steps. For humanoids with non-point feet, given
reasonable velocity and acceleration thresholds, being in a
Stopped State will also imply that the Capture Region has
a large intersection with the convex hull of the support feet.

We consider the gait of the robot to have two main phases,
the Capture Step and the Stopping Stance Phase:
• Capture Step: The single support phase and swing foot

placement during which the robot takes a step in attempts
to reach a Stopped State during the next support phase.

• Stopping Stance Phase: The support phase occurring
after the Capture Step, during which the robot attempts
to reach a Stopped State, without taking any additional
steps.

Note that the Stopping Stance Phase could be a double
support phase, followed by a single support phase, or could
be an instantaneous exchange of support into a single support
phase. We define the control systems that are in effect during
each of these two stages of the gait as follows:

• Stepping Control System: The control system the robot
utilizes during the Capture Step. πstep.

• Stopping Control System: The control system the robot
utilizes during the Stopping Stance Phase. πstop.

The Stepping Control System will determine the location
that the robot steps to. We define the module of this control
system that determines the desired location to step to as the
Desired Step Location Calculator,
• Desired Step Location Calculator: Control system mod-

ule of the Stepping Control System that calculates the
desired step location in attempts to reach a Stopped State
during the Stopping Stance Phase.

Note that the Stepping Control System may query the
Desired Step Location Calculator either at predefined trigger
events, or continuously throughout the swing, to determine
where to step to. Let us make the following assumptions:

A1 The Stepping Control System is a function of the
robot’s state, ~x, some internal controller state vari-
ables, ~pstep, and a desired stepping location, ~xstep.
~u = πstep(~x, ~pstep, ~xstep). The Stepping Control
System does a reasonable job of stepping to the de-
sired step location, maintains balance, and regulates
any other important aspects of walking.

A2 The Stopping Control System is a function of the
robot’s state, ~x, and perhaps some internal con-
troller state variables, ~pstop. ~u = πstop(~x, ~pstop).
The Stopping Control System does a reasonable
job of stopping (reaching a Stopped State), without
requiring an additional step, from a reasonably sized
basin of attraction of states.

Our problem statement is then as follows: Given a biped
with a preexisting Stepping Control System and a preexisting
Stopping Control System, determine the desired foot place-
ment for the Stepping Control System, such that after the
robot takes a step, the Stopping Control System will bring the
robot to a Stopped State. In other words, determine a Desired



Step Location Calculator ~xstep = πcapture(~x, ~pstep, ~pcapture),
where ~pcapture represents potential internal state of the Desired
Step Location Calculator. Note that we assume the Desired
Step Location Calculator has access to both the state of the
robot, ~x, and any internal state of the Stepping Controller,
~pstep.

In this paper we assume that a Stepping Control System
and a Stopping Control System already exist for the biped
so that we can concentrate on using learning to determine
a Desired Step Location Calculator. We emphasize the Step
Location Calculator because choosing an appropriate stepping
location is perhaps the most critical control action to take
when attempting to stop in bipedal walking, particularly in
3D bipedal walking. Other control actions, such as moving the
Center of Pressure on the feet, accelerating internal momentum
(e.g., lunging the upper body or “windmilling” the arms), or
altering the Center of Mass trajectory are also useful control
actions. However, their success in push recovery depends on
the robot first choosing an appropriate step location, such
that these control actions can be used to bring the robot to
a Stopped State.

In the experiments for this paper, the Stepping Control
System and the Stopping Control System that we employ each
are designed using simple physics based heuristic control rules
[25]. The main strategy employed for the stopping control
system is to modulate the Center of Pressure on the support
foot based on the Linear Inverted Pendulum Model in order
to have the Center of Mass come to rest over the foot. In
this paper, we do not use strategies that involve accelerating
internal momentum or altering the Center of Mass trajectory
based on velocity. However, controllers that use these strate-
gies could also be used in the presented learning method and
should result in larger Capture Regions than controllers that
do not employ these strategies.

We state the above problem fairly generally and would like
to learn Capture Regions for any state of the robot. As a
stepping stone to that result, in this paper we focus on the
problem of starting in a Stopped State, being pushed, and then
taking a step and returning to a Stopped State. The robot starts
balancing over one leg with the other leg raised off the ground.
A pushing force occurs, disrupting the robot’s balance and
requiring the robot to take a step to stop. Setting the robot up
like this initially is less general, but it allows us to focus on this
particular instance of the problem, and allows us to generate a
sufficient set of data to learn from with a reasonable number
of trials. In addition, once this skill is learned, it can be used
as the basis for stopping from more general conditions.

III. SIMULATION MODEL

The learning method is verified on a simulated 12 degree
of freedom humanoid robot. Table I details the important
parameters of the model.

IV. LEARNING TECHNIQUES

We present two different learning techniques, one off-line
and one on-line, to solve the problem presented in the previous

section. Instead of learning from scratch, both techniques
employ a nominal stepping location as a starting point to
learn from. The nominal stepping location is based on the
Linear Inverted Pendulum Model [9] of walking and, in our
simulations, typically predicts a Capture Point well within 20
centimeters of an actual Capture Point. The off-line learning
technique represents the learned Capture Point as an offset
from the Linear Inverted Pendulum Capture Point. This offset
is calculated based on curves fit to several variables of the state
vector. The on-line learning technique represents the learned
Capture Point using a Radial Basis Function Neural Network.

A. Stopping Energy Error

To evaluate the performance of the learned Desired Step
Location Calculator, it will be necessary to compare the errors
resulting from different stepping locations. While there is a
clear distinction between a Stopped State and a state that
will lead to a fall, a measure of stopping error is required
to compare two falling states.

To compare results from stepping in different locations, we
define a Residual Stopping “Energy” as,

Estopping =
1
2
|~̇x|2 +

1
2
g

l
|~x|2, (1)

where ~x is the ground projection of the vector from the support
foot to the Center of Mass, g is the gravitational acceleration,
and l is the average Center of Mass height. Note that this
quantity is similar to the conserved Orbital Energy of the
Linear Inverted Pendulum Model [9], except that instead of
subtracting the two terms, we add them.
Estopping will decrease as the Center of Mass approaches

the foot and decelerates. It will reach a minimum approxi-
mately when the Center of Mass is the closest to the foot. We
use the minimum value achieved during an attempted stop as
the Stopping Error, and refer to the state of the robot at that
instance as the “Top of Stance” state. For a given push, it is
reasonable to expect that the Stopping Error will decrease as
the robot steps closer and closer to the Capture Region. When
the robot steps to a Capture Point, the Stopping Error will be
near zero since the robot will pass through a Stopped State,
with the Center of Mass approaching a balanced position over
the foot.

B. Off-line Learning Technique

In the off-line learning technique, we collect data resulting
from a number of different pushes on the robot, and a number

TABLE I
SIMULATED ROBOT PARAMETERS

Total Mass 28.84 kg
Mass in Body 16.0 kg

Mass in Each Leg 6.42 kg
Leg Length 0.911 m

Standing Center of Mass Height 0.945 m
Foot Width 0.1 m
Foot Length 0.203 m



of different stepping locations on the ground. The pushes were
simulated as impact forces on the robot for a set time, 0.05
sec, at varying magnitudes, 150 to 550 N at 100 N intervals,
yielding force impulses between 7.5 and 27.5 Nsec. The
direction of the applied force was varied over the full range of
[0, 2π] at 10 even intervals. During learning, the Desired Step
Location Calculator returned the Capture Point predicted by
the Linear Inverted Pendulum Model plus an offset that varies
along a 15 by 15 point grid spanning ±0.15m in both x and
y. For each push setting (magnitude and direction pair), and
offset, the robot is started from rest on one foot and disturbed
by the impact force. The Desired Step Location Calculator
decides where to step, and the simulation continues until the
next support phase either reaches a Stopped State or the Center
of Mass falls below 0.65m, indicating a fall. Each force setting
is simulated for 225 swings, one for each offset. There are 500
force settings, yielding 112500 trials.

The centroid of the Capture Region for each force setting is
then calculated from the trial data. This yields an offset vector
from the nominal location estimated by the Linear Inverted
Pendulum Model to the centroid of the Capture Region. We
learn a Desired Step Location Calculator by fitting functions of
the decision state to estimate the offset vector to the centroid of
the Capture Region. It was found that the angle and magnitude
of the desired offset were best correlated with the angle (in
the XY plane) of the Center of Mass velocity at the decision
event, so this was the only dimension of the state vector
used in the calculation of the offset. The learned Desired Step
Location Calculator determines the desired step by calculating
the Inverted Pendulum Capture Point and adding an offset
vector calculated by evaluating the fit functions for the offset
magnitude and angle using the decision state Center of Mass
velocity angle.

To test the Desired Step Location Calculator, a new set of
pushes was generated at a finer resolution, 150 to 550 N at
50 N intervals and 20 even angle intervals. These pushes were
simulated on the robot using both the simple Linear Inverted
Pendulum model to calculate Capture Points and the learned
Desired Step Location Calculator.

C. On-line Learning Technique

In the on-line learning technique, the robot is pushed
randomly and the Desired Step Location Calculator is used
to decide where to step. Based on the results of the step, the
Desired Step Location Calculator is updated. The simulation
is run for 4000 random pushes. During the first 1000 trials,
learning is turned off in order to get a baseline estimate
of success rate. Learning occurs during trials 1000-3000.
During the final 1000 trials learning is turned off again in
order to get a final estimate of post-learning success rate. In
each of the trials, the push force and direction is randomly
determined. The force magnitude varies in the range of 200
to 450 Newtons, yielding force impulses between 10 and 22.5
Nsec. The force direction varies in the range [−π4 ,

5π
4 ]. The

angle is measured from the forward axis of the biped. We
omitted the π

2 radian sector to the right of the robot because

the controller currently has difficulty maintaining stability in
that region, and it forces the swing leg (the left leg) to cross
through the support leg.

1) Radial Basis Function Network: The Desired Step Lo-
cation Calculator stores learned Capture Points in a set of 11
Radial Basis Function Neural Networks. Given a state, the
Calculator chooses the Network to use based on the distance
in the XY plane of the Center of Mass from the support foot.
Each network has a two dimensional input vector composed of
the Linear Inverted Pendulum Capture Point x and y location
with respect to the support foot.

Each Radial Basis Function Network has 4356 Gaussian
basis functions with centers on a grid with 3cm spacing along
each input dimension. Each Gaussian basis function is defined
by

G(~x) = Ae(−
(~x− ~xo)2

r2 ) (2)

where r is 0.03m, ~x is the input velocity vector, and ~xo is the
center of the Gaussian. A is the weight attributed to the basis
function, and is updated to train the network.

When the controller queries for a Capture Point, the De-
sired Step Location Calculator calculates the Linear Inverted
Pendulum Capture Point, (xc,lip, yc,lip) from the current state
of the robot. It then selects the Network to use based on the
distance of the Center of Mass from the support foot in the
Cartesian plane. Each Network is covers a range of 0.03m
of Center of Mass distance. It then uses (xc,lip, yc,lip) as the
input vector to the Radial Basis Function Network. Based on
the result of the step, the network is then updated.

2) Learning Update Rule: After each swing trial, if the step
location succeeded in bringing the robot to a Stopped State,
no update is applied to the network. If the step location chosen
resulted in the robot falling, the trial is stopped when the body
height goes below a threshold, 0.85 m. This final velocity
vector of the body as it falls away from the support foot
corresponds to the appropriate direction in which to correct
the Desired Step Location. Therefore the desired offset, ~δoffset,
is calculated as

~δoffset = Estoppingẋfinal (3)

where the magnitude to correct the location by is determined
by Equation 1, the energy error of the top of stance. A learning
gain is then applied to maintain stability of the learning
process, yielding

∆V = δoffsetKlearning, (4)

where Klearning = 0.6.
The x and y values of ∆V are used to update the weights

of each Radial Basis Function. This is done by calculating the
total unweighted response of the set of basis functions G in
each network, Vunweighted by setting all the function weights
to 1,

Vunweighted =
∑
G∈G

G(~x)
∣∣
A=1

. (5)



Each weight in the network is changed by calculating its
unweighted contribution to the network and multiplying by
the desired ∆V .

∆Ai = ∆V
Gi|A=1

Vunweighted
. (6)

V. SIMULATION RESULTS

Fig. 2. Diagram showing results of stepping to various locations for a given
push. Pink circles show Capture Points. At other points a red arrow shows the
resulting vector from the new support foot to the Center of Mass Position and
a green arrow shows the resulting Center of Mass Velocity at the point where
the Center of Mass comes closest to the center of the support ankle. The black
and white target shows the ground projection of the Center of Mass when the
Desired Step Location Calculator was queried. The blue rectangle shows the
location of the current stance foot. The center of the grid of points is the
location of the predicted Capture Point using the Linear Inverted Pendulum
Model.

Learning resulted in a significant increase in the frequency
of the robot coming to a stop and a significant decrease in the
residual energy after a step in both the off-line learning case
and the on-line learning case.

A. Off-line Learning

Figure 2 shows the results of stepping to various locations
for a given push. Pink circles show Capture Points. At other
points a red arrow shows the resulting Center of Mass position
and a green arrow shows the resulting Center of Mass Velocity
at the point where the Center of Mass comes closest to the
center of the support ankle. The black and white target shows
the ground projection of the Center of Mass when the Desired
Step Location Calculator was queried. The blue rectangle
shows the location of the current stance foot. The center of the
grid of points is the location of the predicted Capture Point
using the Linear Inverted Pendulum Model.

Figure 3 shows the measured and best fit stepping location
offsets resulting from off-line learning. The magnitude and
angle of the step location offset (vertical axes) are functions
of the Center of Mass velocity angle at the decision event (hor-
izontal axis). The offset magnitude is fit using a cubic curve.
The angle is fit using a cubic curve for velocity angles less than
0, and a line for velocity angles greater than 0. Several points
in each dimension were ignored as outliers when calculating
the best fit curve, as the resulting fit passed near fewer of
the measured points. These outliers imply that the Center of
Mass velocity angle cannot completely characterize the offset

vector of the Capture Point from the Linear Inverted Pendulum
Capture Point. However, these curve fits provide the controller
with a simple approximation that encompasses enough of the
measured data to make a reasonable prediction.

Figure 4 shows the Stopping Error using Capture Points pre-
dicted from the Linear Inverted Pendulum Model and using a
curve fit with off-line learning. Nine different force magnitudes
from 150 to 550 Newtons for 0.05 seconds, corresponding to
7.5 to 27.5 Nsec impulses were applied from 20 different
directions. The mean squared error before learning is 0.137
J2

Kg2 , and the controller successfully comes to a Stopped State
only 1 out of 180 trials. After learning the mean squared error
is 0.0192 J2

Kg2 , and the controller successfully comes to a
Stopped State in 45 out of 180 trials.

B. On-line Learning Results
Figure 5 shows the learning results of the on-line learning

trials. Learning is turned on after 1000 trials and turned off
after 3000 trials. We see that the pre-learning success rate is
about 60% and the post-learning success rate is about 90%.

Figure 6 shows a representation of the Radial Basis Function
Memory. The three rows of the graph show the memory
throughout the training process, at 100, 200, and 1000 learning
iterations. The horizontal and vertical axes of each plot are the
x and y location of the Linear Inverted Pendulum Capture
Point. The plots from left to right represent slices of the
memory at progressively larger Center of Mass distances from
the support foot. The Center of Mass range is represented as a
black ring around the center of the foot, represented as a blue
rectangle. The coloring in each plot represents the offset of
the learned Capture Point from the Linear Inverted Pendulum
Capture Point.

VI. DISCUSSION AND FUTURE WORK

We have presented a method for learning Capture Points
for Humanoid Push Recovery. This method assumes that a
Stepping Controller and a Stopping Controller already exist for
the biped. We learn offsets to Capture Point locations predicted
from the Linear Inverted Pendulum Model of walking. This
results in a Desired Foot Placement Controller that the Step-
ping Controller can query. Simulation results show that this
method results in significantly more robust push recovery than
without using learning. There are several points of discussion
and potential areas of future work.

A. What was Learned?
The intent of this study was to learn Capture Points for

Humanoid Push Recovery. While we achieved improved push
recovery performance through learning, it is interesting to
think about what was really learned. While the Stepping
Control System does a reasonable job of stepping to the
desired step location, it does have some errors. Therefore,
in addition to correcting for the deviation from the Linear
Inverted Pendulum Model, we also adapt to the errors resulting
from the Stepping Control System. In other words, we learned
desired stepping locations that result in steps to actual Capture
Points, even if the actual step is away from the desired step.
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Fig. 3. Measured and best fit stepping location offsets resulting from off-line learning. The left graphs shows the angle of the step location offset (vertical
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Fig. 4. Stopping Error using Capture Points predicted from the Linear Inverted Pendulum Model (left) and adding a Capture Point offset predicted from the
simple curve fit based on the Center of Mass velocity angle at the decision event (right). Nine different force impulses were applied from 20 directions. The
mean squared Stopping Error when using the Linear Inverted Pendulum model is 0.137 J2

Kg2 , with a stopping success rate of 1 out of 180 trials. The mean

squared error when using the curve fit to predict Capture Point offsets is 0.0192 J2

Kg2 , with a success rate of 45 out of 180 trials.

Fig. 5. Results of on-line learning. A successful trial has a value of 1, and a failed trial has a value of 0, regardless of the residual Energy Error. The points
plotted represent the average value over 200 trials. The filtered estimate was found by using a forward/reverse 500 trial running average of the data padded
on either side with the average of the first and last 500 iterations. The vertical lines represent training being turned on at 1000 iterations and off after 3000
iterations. The disturbance forces used to test the controller before and after training are identical.



Fig. 6. A representation of the learned memory at 100 (top row), 200 (middle row), and 1000 (bottom row) iterations for on-line learning. The black ring
represents the range of locations of the Center of Mass for the given graph. The blue rectangle represents the foot location. The XY space represents the
Linear Inverted Pendulum Capture Point location. The color at a point represents the magnitude of the offset from the Linear Inverted Pendulum Capture
Point to the corresponding Capture Point in memory. The scale is logarithmic such that blue regions represent offset magnitudes of less than 3 centimeters,
dark red represents a 30 centimeter offset.

B. Generalizing to More States

In this study we limited the initial setup of the robot to
start standing and balancing on one foot with the other foot
slightly off the ground. Then a disturbance force was applied.
By limiting the initial setup to these conditions, the effective
size of the space that needed to be generalized over was
relatively small. Since only the magnitude and direction of
the disturbance push were varied between trials, only a two
dimensional subspace of the full state space was visited. This
limited exploration of state space allowed us to avoid the Curse
of Dimensionality and easily learn Capture Point locations
using standard function approximators and low dimensional
Radial Basis Function Networks with gridded center spacing.

This limited approach is justifiable as a first step toward
general push recovery since the learned Capture Point loca-
tions can be used as a baseline for a broader range of state
space exploration. Similarly to a toddler learning to walk, the
ability to recover from a push when standing can be built on
to develop the ability to recover from pushes while walking.

We are now expanding our technique to learn to recover
from pushes that occur at random times during walking. This
effort may require more complex learning techniques that
perform good generalization over a large range of state space.
However, by starting with the controller that is learned using
the techniques presented in this paper, learning for the more
general case should be sped up.

C. Improving the Stopping Controller

In this study, we used a Stopping Controller that utilizes foot
Center of Pressure regulation as the main strategy for stopping
the robot and balancing over the foot. Our Stopping Controller
did not use acceleration of internal angular momentum (lung-
ing the body or windmilling the arms), or modification of the
Center of Mass trajectory to assist in stopping. These two
neglected strategies can be quite powerful both in expanding
the range of pushes that a biped can recover from and in
expanding the Capture Region for a given push.

We did not use these two strategies in this study simply
because we do not have a good stopping controller that uses
these strategies yet. We are currently developing such Stopping
Controllers and have shown preliminary work for planar
bipeds [26], [27]. Because we set up the problem formulation
in this paper such that any reasonable stopping controller can
be used, as our Stopping Controllers are improved, we should
be able to use them in the current framework without requiring
modification to the framework.

D. Learning Two-Step and Three-Step Capture Points

In this paper we learned One-Step Capture Points, i.e. points
that could be stepped to in order to stop in one step. There
are several reasons why we chose to stop in one step. From a
practical point of view, there are many instances where a biped
may need to stop in one step when footholds are limited and
minimal body motion is allowable. For example, if crossing
a cluttered room, there may only be one area to step to so
the robot will get only one chance to stop. From a robustness
point of view, stopping in one step is harder than stopping in
multiple steps, so a controller that can stop or almost stop in
one step after various pushes should be able to easily stop in
two or three steps after these same pushes. For example, for
each of the trials that our simulation did not stop in one step
after learning, the Residual Stopping Error was very low and
had the robot simply put its trailing foot down next to the new
Support Foot, the robot likely would have recovered from the
push.

In this paper, we did limit the magnitude of pushes to those
in which the robot can stop in one step. For higher magnitude
pushes, it may be theoretically impossible to stop in a single
step, in which case two or more steps may be required, if the
robot can recover at all. Therefore, it may be useful to also
learn Two-Step, Three-Step, and perhaps even N-Step Capture
Points. Intuitively, it seems that the best strategy for recovering
from a large push in which a One-Step Capture Point is not
reachable is to step as far as possible as fast as possible in the



direction of the Humanoid’s Center of Mass velocity vector
until, after a few steps are taken, a One-Step Capture Point is
now reachable.

Knowing to what extent a Humanoid can stop in a given
number of steps is a potentially useful stability and robustness
margin [28]. Learning One-Step Capture Points allows us to
also determine if a Humanoid is One-Step Capturable. We
could probably extend the methods in this paper to also learn
the One-Step Capture Margin, given a robot’s state. If we were
able to learn N-Step Capture Points and/or N-Step Capture
Margins for large N, then we would have a way to predict
whether a Humanoid is eventually stoppable, or will eventually
fall.

E. Application to a Real Robot

We are currently building a Humanoid robot with inertial
parameters that are close to the simulation model used for this
paper. The robot should be operational in the Summer of 2008.
The first experiments on this robot will be for Humanoid Push
Recovery, including reproducing the results from this paper on
the real robot.
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